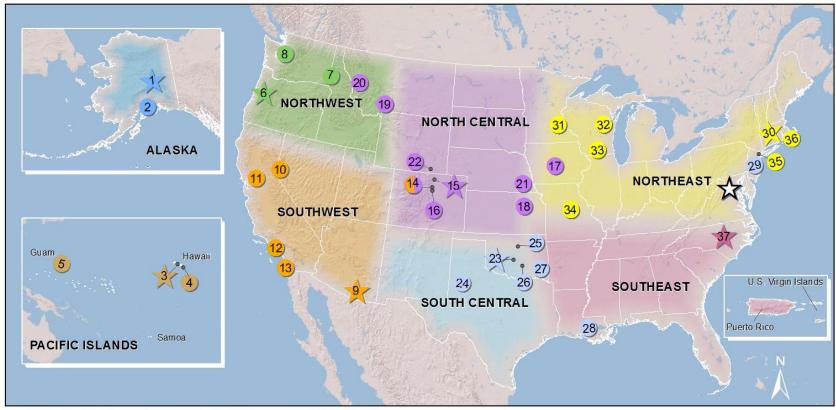
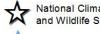
Bringing Order to Chaos: ScienceBase and Other Project Lifecycle Tools

September 5, 2013

Data and Information Coordinator
USGS National Climate Change & Wildlife Science Center
Reston, VA


The Plan

- Who we are, challenges, opportunities
- Approach, policies, process, big picture
- Pieces of the big picture
- Integration
- The future



How best to support NCCWSC, the CSCs, data management and provide some core tools?

Base from ESRI, 2009, Albers Equal Area Conic Projection, North American Datum of 1983

National Climate Change and Wildlife Science Center

CSC Lead Institutions

CSC Institutions

Alaska CSC

- 1. University of Alaska Fairbanks
- 2. University of Alaska Anchorage

Pacific Islands CSC

- 3. University of Hawaii at Manoa
- 4. University of Hawaii at Hilo
- 5. University of Guam

Northwest CSC

- 6. Oregon State University
- 7. University of Idaho
- 8. University of Washington

Southwest CSC

- 9. University of Arizona
- 10. Desert Research Institute (Nevada)
- 11. University of California Davis
- 12. University of California Los Angeles
- 13. Scripps Institute of Oceanography
- 44 University of Octored

14. University of Colorado

EXPLANATION

North Central CSC

- 14. University of Colorado
- 15. Colorado State University
- 16. Colorado School of Mines
- 10. Colorado School di Wil
- 17. Iowa State University
- 18. Kansas State University
- 19. Montana State University
- 20. University of Montana
- 21. University of Nebraska Lincoln
- 22. University of Wyoming

South Central CSC

- 23. University of Oklahoma
- 24. Texas Tech University
- 25. Oklahoma State University
- 26. Chickasaw Nation
- 27. Choctaw Nation of Oklahoma
- 28. Louisiana State University
- 29. NOAA Geophysical Fluid Dynamics Laboratory

Northeast CSC

- 30. University of Massachusetts Amherst
- 31. University of Minnesota
- 32. College of Menominee Nation
- 33. University of Wisconsin Madison
- 34. University of Missouri Columbia
- 35. Columbia University
- 36. Marine Biological Laboratory

Southeast CSC

37. North Carolina State University

Challenges

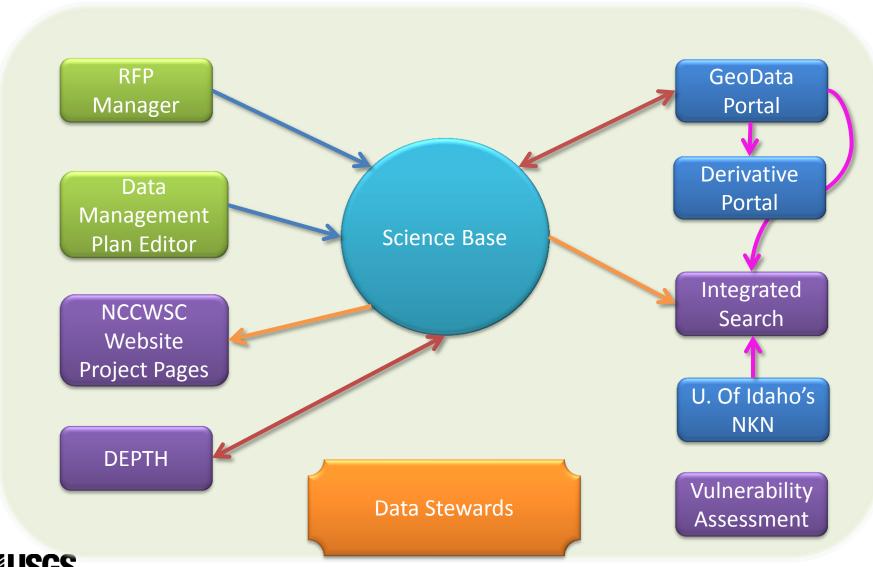
- Need to know what we are doing and where across the network
- Need to provide some basic capabilities and consistency for the NCCWSC and the CSCs
- Ensure data policies are enforced
- Provide access for university + federal scientists
- Fund ~100 projects each year
- Recognize reality that we are a new and growing program with a small staff

Opportunities

- Blank slate
- Government policy
- Supportive management
- Recognition of importance of tools and data management
- Extensive capabilities at USGS, other federal agencies, and at the universities

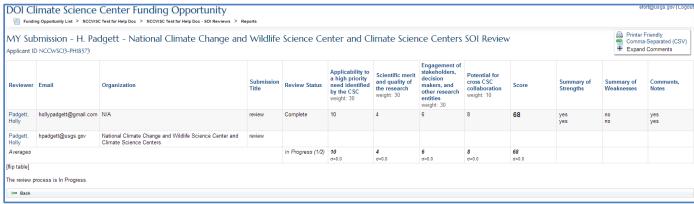
Approach

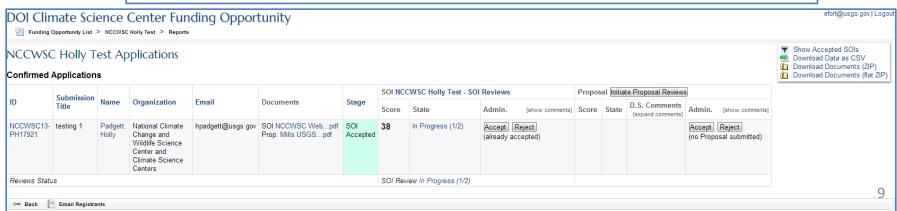
- Don't build another stove pipe
- Provide support to CSCs both tools and people
- Develop data policies
- Link projects to data and products
- Use standards and web services
- Identify integration opportunities
- Develop core capabilities that our partners can link to, integrate, re-imagine


Data Policies

- All project products (data, models, etc.) will be shared (unless there is a good reason not to)
- Sharing happens when the project is complete
- Data management plans are required
- Common standards should be used
- Metadata must be provided

https://nccwsc.usgs.gov/content/data-policies-and-guidance




The Big Picture

RFP Manager

- Needed a way to collect proposal information and conduct peer review
- Ensures consistency in process and compliance with policies (including DMP)

Data Management Plan Template

[Name of Output]
Describe the data output.

Describe the proposal resources allocated for data management activities for the new data

Organized by inputs and outputs

For inputs, ask about new collections and use

of existing data

		Data Management	Describe the proposal resources allocated for data management activities for the new data
		Resources:	collected as a level of effort, total dollars allocated, or as a percentage of the total project's cost.
			Resources could include people's time or proposal funding.
		Format:	Identify the formats in which the data will be generated, maintained, and made available.
		Data Processing &	Describe data processing steps or provide a scientific workflow you plan to use to manipulate the
1	[Name of Collection]	Scientific Workflows:	data, as appropriate.
Description:	Describe the information that	Quality Checks:	Specify the procedures for ensuring data quality during the project.
	landscape, etc.) of the data. Ind	Matadata	Identify the metadata standard that will be used to describe the data and products (FGDC, ISO,
Format:	Identify the formats in which the		EML, etc.)
Quality Checks:	Specify the procedures used to	l Volume Estimate:	Estimate the volume of information generated: megabyte (MB), GB, TB, or PB.
Quanty Checks.		Dackup & Storage.	Describe the approach for backup and storage of the information associated with the research
	and an assessment of usability		project during the project.
Source:	Identify the source for the data	Repository for Data:	In addition to the NCCWSC repository (ScienceBase), identify any other repositories where you
Data Processing &	Describe any data processing s		plan to share your data.
Scientific Workflows:	manipulate the data, as approp	Access & Sharing:	Prior to the completion of the project, specify who should have access to project
Backup & Storage:	Describe the approach for back		information/products and what type of access (Public, Read, Write, No Access).
	project during the project.	Exclusive Use:	Project data and associated products should be available publically at the end of the project. If a
	p. 2,230 da6 d6 p. 6,660		request to limit access for a period of time after project completion is needed, please identify
Volume Estimate:	Estimate the volume of inform		the length of time and the reason for the extension. (Request cannot be more than two years.)
Access & Sharing:	Prior to the completion of the	Restrictions:	Identify any limitations on access or reuse (e.g., sensitive data, restricted data, software with
	information/products and wha		license restrictions, etc.) and provide justification for restriction. Provide citation or
Postrictions	• •		documentation describing limitations if due to policies or legal reasons.
Restrictions:	Identify any limitations on acce	Citation:	Specify how the project's data should be cited.
	license restrictions, etc.) and p	Digital Object	Provide a digital object identifier (DOI)/link to the project when available publically.
	documentation describing limit		10
Fees:	Identify any fees associated wi	Contact:	Provide a point(s) of contact if questions arise related to the data and associated products
Citation:	Provide citation for data produ		(name, email, and phone number).

Data Management Plan Review

- For each proposal, the proposal data management plan (DMP) is reviewed and comments are provided
- For funded proposals, a data steward works with the research team to complete the full DMP
- At project completion, the data steward works with the research team to transfer the products to the NCCWSC repository -ScienceBase

ScienceBase

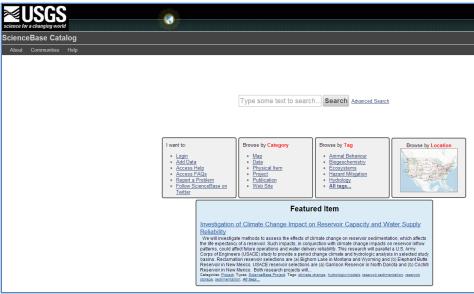
What is it?

- Website
- Provides a data cataloging and collaborative data management platform for USGS scientists and partners
- Central search and discovery application along with web services that facilitate other applications
- Open source project
- Bigger than just the CSCs

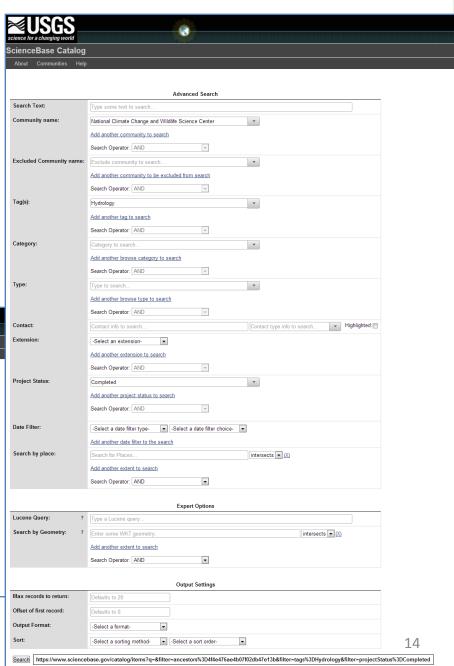
https://www.sciencebase.gov/catalog/

Why ScienceBase?

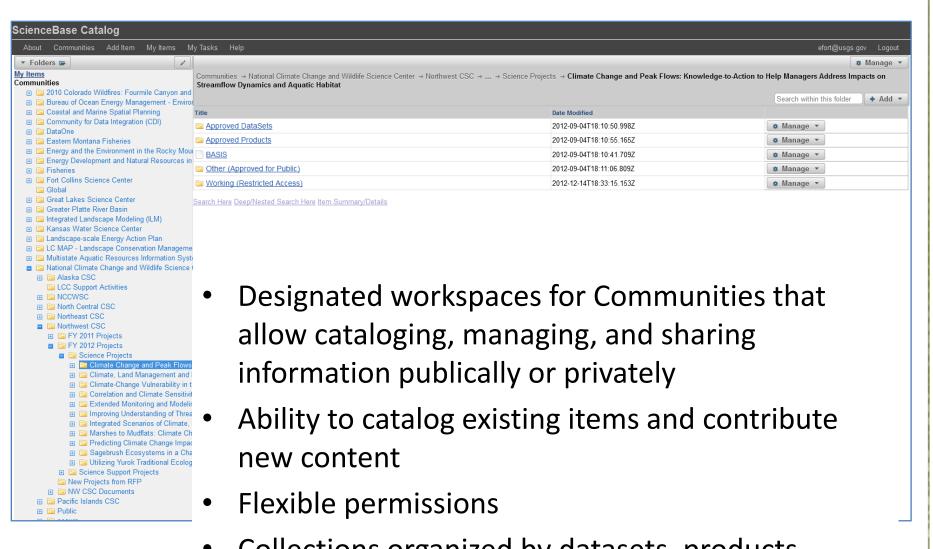
- Powerful and flexible
- Can store many different kinds of data including

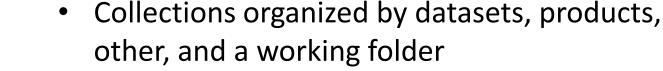

large datasets and models

- Core fields and extensible
- Searchable
- Geospatial component
- Available to non-DOI users
- Information can be open (public) or restricted
- Meets federal IT and security requirements
- Web services



Finding "Stuff" in ScienceBase


 Lots of ways to search



ScienceBase Organization

ScienceBase Project Record

Communities → National Climate Change and Wildlife Science Center → Northwest CSC → ... → Science Projects → Climate Change Threats to Fish Habitat Connectivity: Growth and Predation

Geospatial

- Shapefiles
- Geotiffs
- Polygon

Note

- Tags
- Communitities
- Related items

Provenance

Catalog Item:

Created by: hpadgett@usgs.gov on Wed Jul 18 11:40:04 MDT 2012 Last Updated by: madeline steele@fws.gov on Wed Aug 28 10:11:46 MDT 2013

Tags

Topics: 2011 CSC Climate Change Habitat Connectivity Northwest CSC

All tags... Categories:

Data Project

Types: Downloadable Map Service

OGC WFS Layer OGC WMS Layer Shapefile

View JSON ATOM ISO XML

An interdisciplinary U.S. Geological Survey (USGS) team has been working with local stakeholders in the Methow River (a tributary of the Columbia River) in arid eastern Washington State to develop decision support tools with which to evaluate possible climate change effects on natural resources, human economies and Native American cultural values. A stakeholders' workshop was held, which was attended by local politicians; federal, state and NGO resource managers; ranchers/farmers and Tribal representatives. Products from the workshop included stakeholder-defined goals for adapting to climate change. An important aspect of adaptation of aquatic resources in the Methow Basin is the role of habitat connectivity on the ability of native fishes to obtain food. Native fishes participate in feeding both as predators and as prey. With funds from the Great Northern LCC and the Northwest Climate Science Center (NW CSC), we will examine the influence of temperature, habitat availability, and flow under normal conditions and under climate change scenarios to simulate growth and consumption by fish and estimate the potential impact of predation on juvenile ESA-listed salmon. Specific tasks to be completed are: (1) determine if large bodied fish (bull trout, cutthroat trout and mountain whitefish) feeding in the mainstern Columbia River experience increased growth, which increases their predation on juvenile salmon in the Methow River; (2) develop parameters for bioenergetics models for bull trout and mountain whitefish to predict their growth under predicted climate change scenarios; and (3) determine current and potentially available side-channel connectivity, which provides rearing areas and refugia from predation for juvenile fish, in the mainstem Methow River. Thus far, we have (1) collected otoliths from mountain whitefish (our surrogate, non-ESA listed, large-body predator); (2) validated bioenergetics parameters for bull trout; and (3) completed a preliminary on-the-ground assessment of side channels in the Methow. With NW CSC funds we will model possible effects of climate change on fish habitat by completing the side channel assessment and combining that with existing tributary and mainstem models that predict flow under several climate change scenarios. These predicted changes will be run through an existing fish habitat

Read more...

Original Metadata:

- · columbia.shp.xml
- Entiat.shp.xml

Principal Investigator: Patrick J Connolly

decision support system to predict changes in habitat.

Co-Investigator: Matthew G Mesa, Jill M Hardiman, James R Hatten, Alec G Maule

Cooperator/Partner: Michael Newsome, Jennifer Bountry, Michelle Schmidt, Karen Jenni, Colden Baxter, Lee Hatcher

Start Date: 2010 End Date: 2012

Interactive Mapper - Open in Google Earth (KML) - Advanced Services

LC MAP - Landscape Conservation Management and Analysis Portal National Climate Change and Wildlife Science Center North Pacific Landscape Conservation Cooperative Northwest CSC

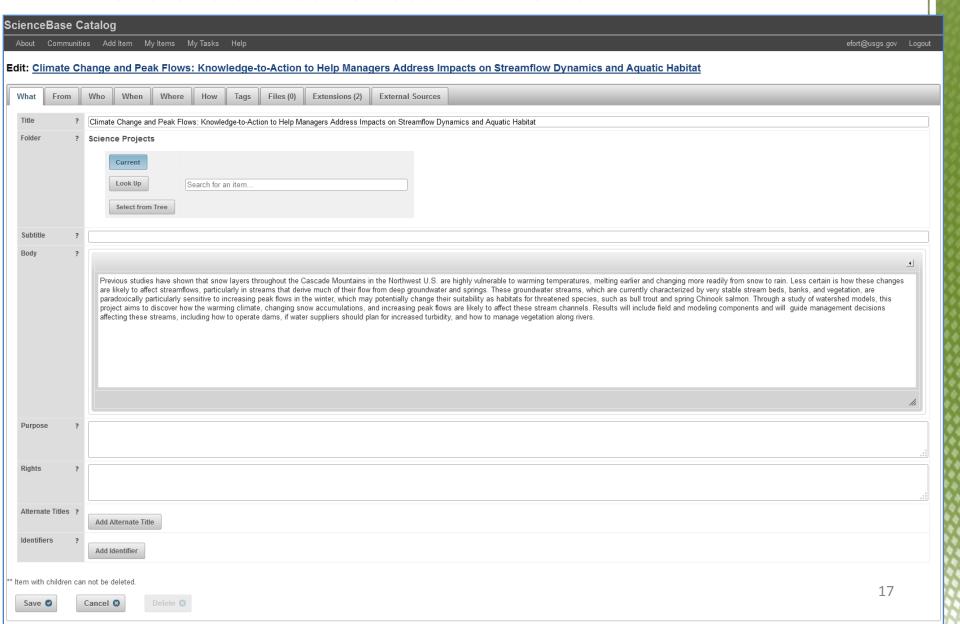
Manage *

Related Items

Parent Item: Science Projects

Child Items: (5):

- Approved DataSets
- Approved Products
- BASIS
- · Other (Approved for Public)
- Working (Restricted Access)


Other Associated Items:

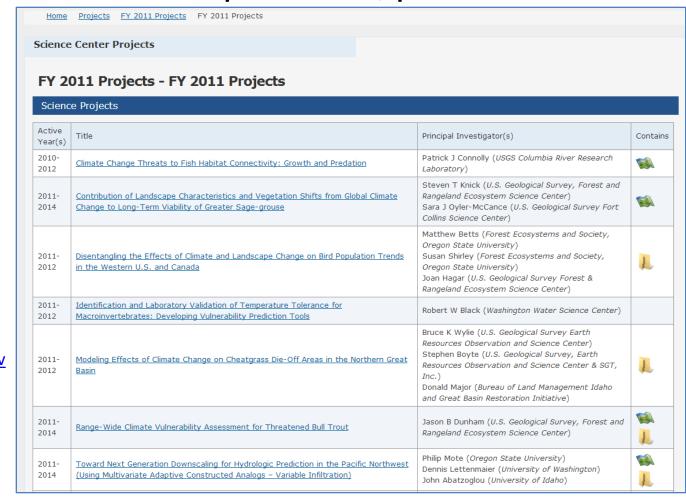
Associate an Item

Editing a Project's Metadata

Extensions added for custom fields

ScienceBase Web Services

 Other sites can consume and present information from ScienceBase with their own look and feel using ScienceBase's REST service architecture using JSON


Examples:

- The NCCWSC website project pages consume
 ScienceBase web services and styled by Drupal
- DEPTH consumes ScienceBase web services and filters for records with project tag

NCCWSC Website Project Pages - Summary

- Organized by CSC and by Fiscal Year Funded
- Icon to indicate map or data/product

CSC Projects: https://nccwsc.usgs.gov/projectpages/4f4e476ae4b07f 02db47e13b

NCCWSC Website Project Pages - Detail

Example URL:

https://nccwsc.usgs.gov/display-project/5006c1e5e4b0abf7ce733f3b/5006f498e4b0abf7ce733f92

Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin

Project Information

Principal Investigator(s):

Bruce K Wylie (U.S. Geological Survey Earth Resources Observation and Science Center)
Stephen Boyte (U.S. Geological Survey, Earth Resources Observation and Science Center & SGT, Inc.)
Donald Major (Bureau of Land Management Idaho and Great Basin Restoration Initiative)

Start Date: October 2011
End Date: September 2012

Project Status: Completed

Tags: Climate Change, Cheatgrass, Great Basin, CSC, Northwest CSC, 2011, Science Project

CSC/NCCWSC Affliation: Northwest CSC

Fiscal Year: FY 2011 Projects

Summary

Cheatgrass (Bromus tectorum) is a dominant invasive species across large areas of the Great Basin. In recent years, the die-off of cheatgrass has been observed across relatively large areas in the region with an estimated 500,000 acres of affected area reported in the general vicinity of Winnemucca, NV. However, actual extent of the phenomenon could be considerably larger as die-offs are occurring in smaller areas across portions of the Northern Great Basin. As part of the Bureau of Land Management's (BLM) Integrated Cheatgrass Dieoff Project, U.S. Geological Survey (USGS) Earth Resources Observation Systems (EROS) Center scientists in collaboration with Don Major, BLM Landscape Ecologist, have developed a cheatgrass performance model that incorporates seasonally integrated normalized difference vegetation index (NDVI) from the enhanced Moderate Resolution Imaging Spectroradiometer (eMODIS) along with environmental attributes. Based on the die-off areas in the area surrounding Winnemucca and in the Owyhee Uplands, we propose to predict areas of potential cheatgrass die-offs under future climate projections and make climate-based forecasts of these die-off areas.

Products & Data

Cheatgrass Dieoff Time-series Dynamics (2000-2010)

Land Cover Applications and Global Change (External URL)

Cheatgrass dieoff in Northern Great Basin Final Report

Cheatgrass dieoff in Northern Great Basin FINAL REPORT 09JUL12.pdf (Download)

Identifying cheatgrass dieoff in the Great Basin by integrating eMODIS NDVI data with ecological models Society for Range Management (External URL)

Mapping interannual cheatgrass production and dieoff in the Great Basin using remote sensing data and ecological models YouTube Video (External URL)

ReadMe file to accompany the report "Mapping Cheatgrass Dieoff in the Northern Great Basin using Ecosystem Performance Modeling"

ReadMe.docx (<u>Download</u>)

Data

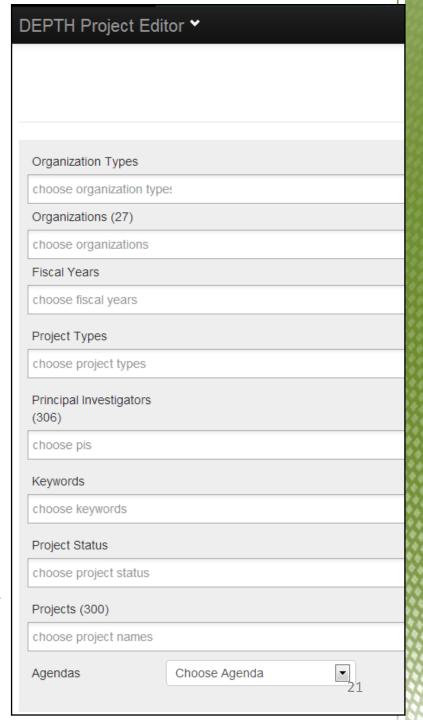
- ▶ Cheatgrass Percent Cover Maps
- ▶ Cheatgrass Dieoffs

Maps

- Cheatgrass PercentCover
- ▶ Cheatgrass Dieoffs

20

ScienceBase Url: https://www.sciencebase.gov/catalog/item/5006f498e4b0abf7ce733f92


DEPTH

- Project-centric view of ScienceBase information
- Searchable by many filters, including science agenda
- Intuitive entry of new records
- Assists with CSC regional coordination

Example:

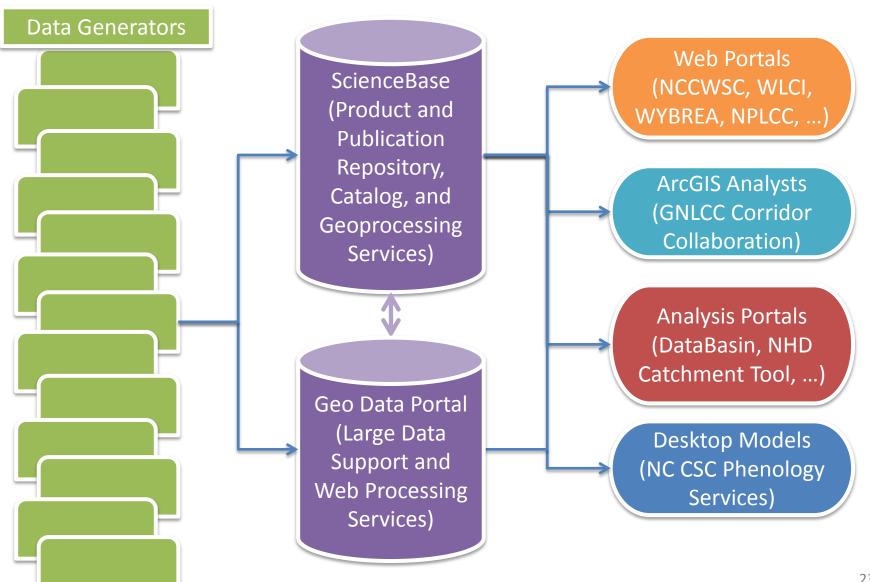
https://my.usgs.gov/depth/#/viewProject/5006f498e4b0ab f7ce733f92/csc

Steps Along the Way

- Collect and review statements of interest and proposals
- Collect and review data management plans
- Select proposals

RFP Manager

ScienceBase


- Harvest accepted proposals into working folder
- Review information and move to public folder when ready

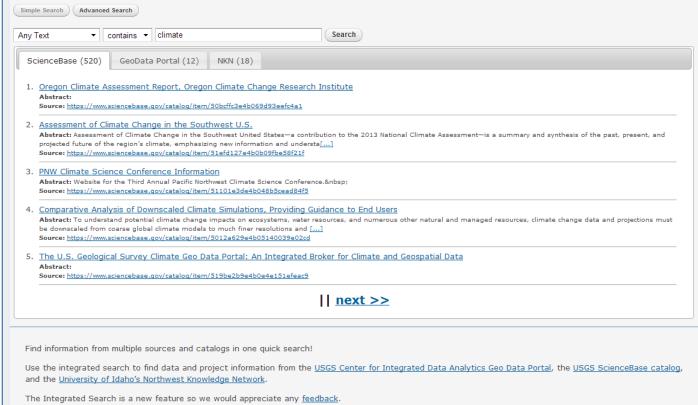
- Make project available on NCCWSC Drupal website and DEPTH
- Search for information via ScienceBase & Integrated Search

Website, Depth, & Integrated Search

How Does This Work with Other Stuff?

Geo Data Portal

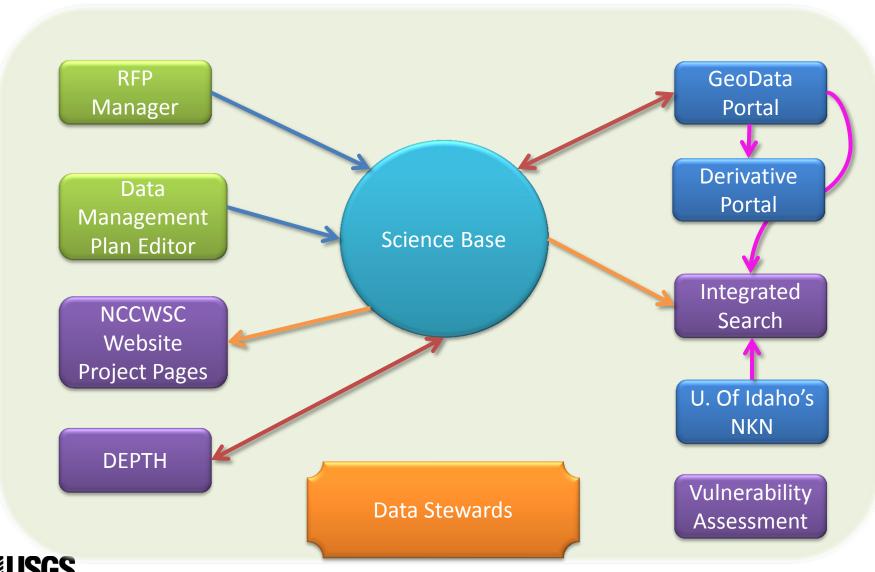
- Tool to help scientists use and subset large datasets such as climate information
- Standards based
- Integrated with ScienceBase



Integrated Search

- Search multiple data repositories at the same time
- Uses common metadata standard
- Works by using csw (catalog service for the web)search

For instructions for adding new catalogs to the integrated search, check the FAQ page.


Give us feedback!

https://nccwsc.usgs.gov /integrated_search

The Big Picture

Link to LCCs and Others

- ScienceBase and related tools used or being considered by several LCCs (aka LC Map)
- ScienceBase team part of the LCC Network's Integrated Data Management Network project (IDMN)
- ScienceBase also used by other parts of USGS and other partners
- Cross-fertilization of data management working groups

So What Does All This Accomplish?

- Provides core, basic capabilities for CSCs that also provide necessary information to the NCCWSC
 - RFP Manager
 - Project Information
 - Data Management
 - Data Repository
- Leverages ongoing work and developed features and tools that others can use
- Supports growth and program's future
- Supports good data management

- Learn lessons from DMPs to improve guidance, clarify, walk line of getting the right amount of information at the proposal stage
- Identify areas for future collaboration and integration with partners and CSC members
- Develop additional tools and features as needed (and as resources allow)
- Add features (DOIs, better metadata tools)
- Follow evolution of government policy and tools

Questions?

Emily Fort

efort@usgs.gov

703-648-4082

